
BtrFS
Next Generation Linux Filesystem

Frank Sweetser fs@wpi.edu

March 2010

mailto:fs@wpi.edu

Standard Disclaimer

·BtrFS still under heavy development

·At least 2 slides are wrong

ƁBut which ones?

·Not all features implemented yet

·Reserves right to:

ƁCorrupt your data

ƁEat your homework

ƁPrank call your ex

BACKGROUND

Why Bother?

·Ext3

ƁReliable and well trusted

ƁJournaled

Ɓ32TiB volumes, 2TiB file size, 231 files

ƁMainstreamed in 2001

·Ext4

ƁEvolution of Ext3

Ɓ1EiB volumes, 16TiB file size, 232 files

ƁNumerous performance tweaks

Today, Tomorrow, and Beyondé

·2 TiB per disk

·14 disks per shelf

·12 shelves per rack

·336 TiB per rack

What about 5 years

from now? 10 years?

Exponential Storage Growth

Scalability

òScalingis not just about addressingthe

storage but also means being able to

administerand to manageit with a clean

interfacethat lets peopleseewhat'sbeing

usedandmakesit more reliable.ó

- SeanMichaelKerner

More Than Just More Bits

·New media types

·Scale to huge volumes

Ɓ33 EiB(or more?) per rack in 10 years

ƁMust maintain acceptable performance

ƁBack up in reasonable time

·High availability

ƁTime is $$$

ƁMaintenance windows thing of the past

Alternative Filesystems

·ReiserFS3
ƁFragile - fsckcan make corruption worse

ƁImage files on disk may get merged

·ReiserFS4
ƁNot yet in mainstream kernel

ƁFuture still somewhat in doubt

ƁMore of sameé

·ZFS
ƁLots of good ideas

ƁReleased by Sun Oracle under CDDL license

ƁNot compatible with GPL

BTRFS TO THE RESCUE!

BtrFS Origins

·Conceived in 2007 at Linux Storage and

File Systems Workshop

·Nearby USENIX session provides copy on

write B-Tree data structures

·Mainline kernel Jan 2009

·Current leading contender for future

primary linux filesystem

·Primary author Chris Mason at Oracle

BtrFS Features

·Huge volume size scalability
ƁRaw size

ƁPerformance

ƁEfficiency

·Online operations

·RAID

·Subvolumesand Snapshots

·Migration from Ext3/4

·Efficient backup support

·SSD enhancements

·Transparent compression

Scalability

·Huge capacity

Ɓ264 files per volume

Ɓ16 EiBmax volume size

Ɓ16 EiBmax file size

·Secret sauce: Copy on Write B-Trees

·On-demand inodeallocation

·Extents based block tracking

B-Trees: The Butter in BtrFS

·Highly efficient data

structure for

organizing trees

·Well understood

·Scales to huge trees

·BtrFS uses copy on

write safe variant

Copy on Write

xxxx dead

On Disk In Memory

dead

xxxx dead
beef

xxxx dead
beef

beef

xxxx

Read

Modify

Write

Update

Refs beef

Copy on Write Benefits

·Disk always in consistent state

·Applies to almost everything

ƁCopy on write B-Trees

·(Almost) no fixed location

ƁRelocating blocks becomes trivial

ƁMetadata can move on the fly

·Essential to online operations

ƁResize

ƁRebalance

ƁMigrate

TurtlesTrees All The Way Down

·B-Tree code is data

agnostic

·Entire volume is just

two B-Trees

ƁOne for metadata

ƁOne for data

·Everythinggets

checksummed

Flexible Block Usage

Inodes

Bitmaps

Directories

Files

Files

Files

Files

Superblock Superblock

Bitmaps Dir

Inodes Dir

Files

Files Files

Files

Static Block Types Dynamic Block Types

Clustering Related Blocks

struct btrfs_disk_key {

__le64 objectid ;

u8 type;

__le64 offset;

}

·Sorted on objectid

before type

·Related objects kept

near each other on

disk

Inode0

File Data 0

Xattrs 0

Inode1

File Data 1

Xattrs 1

Inode2

File Data 2

Xattrs 2

On-Demand inodeAllocation

·Volume initially created with small number
of inodes

·More created as needed

·Flexible
ƁNo longer locked into static file count

·Efficient
ƁLess wasted disk space

Ɓext3/4: ~1.5% pre-allocated to inodes

·Fast
Ɓ465GiB volume created in < 1s

Ɓ7GiB notused by inodes

Efficient Block Usage

·Multiple leaves per

block

·Items packed on top

of block
struct btrfs_item {

struct btrfs_disk_key key;

__le32 offset;

__le32 size;

}

·Data packed on

bottom of block

Item 0

Item 1

Item 2

Data 0

Data 1

Data 2

