Introduction to WiFi Security

Frank Sweetser WPI Network Operations and Security fs@wpi.edu

Why should I care?

Or, more formally – what are the risks?

- Unauthorized connections
 - Stealing bandwidth
 - Attacks on your systems from inside firewall
 - Attacks on 3rd party systems that appear to be from you!
- Information leakage
 - Eavesdroppers capturing sensitive information
 - Often can be done from greater range than normal

Typical Options

There are three basic strategies:

- Leave WiFi wide open, roll with whatever comes
- Leave WiFi open, secure it further upstream and/or on a higher level
- Secure the WiFi layer itself

Open Strategy

- Leave your SSID wide open and completely unsecured – very generous of you!
- Be prepared for the repercussions:
 - Attackers and virus infested machines
 - Accusations of bad things other connected users did
- If popular, you may not have any bandwidth left over!

Open WiFi, Secure Upstream

- Treat WiFi as insecure link think Internet
- Any WiFi facing hosts must be thoroughly secured bastion hosts
- Any leaks will allow users to bypass filters
 - ping
 - DNS
 - Web
- nocat.net
- OpenVPN.org

Securing WiFi

- Create Access Control Lists
- Make it invisible
- Encryption

MAC Address Filtering

- Commonly available and suggested choice
- Very weak trivially spoofable, even in Windows!
- Only useful for preventing accidental associations from ignorant bystanders

Hidden SSID

- Many APs allow you to remove the SSID from the beacons
- Makes network invisible, right?
- Significantly longer roaming times very bad if you're running VoIP over WiFi
- SSID still present in other frames
- Enter kismet...

Kismet Wireless Monitor

- Linux based passive wireless sniffer
- Monitors all packets, not just beacons
- Can find hidden networks
- Supports GPS
- Pulls tons of other useful/dangerous information

Network List—(Autofit)——				T 0
p@thf1nd3r <no ssid=""> KrullNet1 linksys marley <no ssid=""> ! PARMAS <no ssid=""> GRXWirelessNetwork ! SECMAS <no ssid=""> ! <lucent outdoor="" router=""></lucent></no></no></no></no>	T W Ch Pa A Y 06 A Y 05 A Y 06 A N 06 D N D N A Y 06 A Y 06 A Y 06 A Y 06 A N 07 D N D N	ackts Flags 171 27 81 70 312 20 42 30 1 2 13 1 A4 267	Data Clnt 70 35 0 0 0 8 2 17 1 20 18 0 0 0 0 0 0 0 0 0 0 1 66 267 1	Nturks 105 Pckets 1258 Cryptd 104 Weak 0 Noise 289 Discrd 289 Pkts/s 50
				E1apsd
Found IP 159.139.120.13 for Battery: AC charging 100% Oh 	<pre><no ii(<="" ssid="" td=""><td>::00:B0:D0:E</td><td>prn9gir.lan.nerv-</td><td>TCP</td></no></pre>	::00:B0:D0:E	prn9gir.lan.nerv-	TCP
Natural Data/1a				Info
Network Details SSID : linksys Server : localhost:2501 BSSID : 00:04:5A:ED:40:D Manuf : Linksys Model : Unknown Matched : 00:04:5A:00:00:0 FACTORY CONFIGURATION Mar Details	в 0			(-) Up
<pre>Pretwork Details Server : localhost:2501 BSSID : linksys Model : Unknown Matched : 00:04:5A:00:00:0 FACTORY CONFIGURATION Max Rate: 11.0 First : Fri Nov 8 03:19 Latest : Fri Nov 8 03:19 Clients : 2 Type : Access Point (in Channel : 6 WEP : No Beacon : 100 (0.102400 se Packets : 81 Data : 8 LLC : 73 Crypt : 0 Weak : 0</pre>	B 0 :37 2002 :38 2002 frastructur c)	re)		(-) Up

Kismet with GPS Daemon

Native WiFi Security and Encryption

Past Mistakes

- Original Wired Equivalent Privacy (WEP)
- Modern Encryption
 - WiFi Protected Access (WPA)
 - Robust Secure Network (RSN/802.11i/WPA2)
- Authentication
 - Shared Key
 - 802.1x and RADIUS

- Originally developed by IEEE in 1997
- Meant only to provide about same privacy as using a cable – i.e., not much
- Uses RC4 encryption simple, fast, easily implemented in cheap hardware
- Numerous vulnerabilities in all stages

WEP Encryption Keys

- WEP Security provided by 40 or 104 bit static pre-shared key
- 24 bit per-packet Initialization Vector (IV) transmitted with each packet
- IV is appended to static key for encryption/decryption, giving the 64 or 128 bits marketing likes to talk about

WEP Encryption Engine (Simplified)

Swap Cleartext and Encrypted packets for decryption

- A XOR B is true if only one of A or B is true
 0 XOR 0 = 0
 1 XOR 0 = 1
 0 XOR 1 = 0
 0 XOR 1 = 1
- For A XOR B = C, given any two of A, B, or C, the third can be found!

A XOR B = CB XOR C = AA XOR C = B

WEP Authentication

- AP Sends random challenge to client
- Client uses key to create PRGA, XORs with random challenge
- XORd challenge sent to AP to prove possession of key
- Attacker can XOR challenge and response to recreate PRGA
- Attacker can now pass authentication without knowing shared key!

- Multiple instances of the same IV on different packets will eventually allow shared key to be recovered
- 24 bit IV only allows for 16,777,216 values
- Allows for 16k IVs for all nodes using shared key for the entire lifetime of the key
- In other words, IV reuse is
 - Very bad for security
 - Inevitable, especially on a large network

Direct Attacks on Shared Key

- FMS attacks provided reliable method of recovering shared key from traffic analysis
- Certain "weak" IV values leak bits of key
 - IV of pattern a:FF:b leaks byte a-3 of key
 - Many other weak patterns found since
- Skipping weak values to avoid direct attacks only helps statistical attacks
- Still takes thousands of captured packets

No Replay Protection

- Attacker gathers few hundred encrypted packets
- Attacker retransmits each one, until one that generates response is found (ping, ARP, SYN packet, etc)
- Once response generator is found, attacker floods it until enough packets to crack key are generated
- aireplay (part of aircrack) can pick likely ARP requests from capture file and replay automatically

Packet Injection

- Remember PRGA trick from shared key authentication?
- No secure session authentication
- Same PRGA and IV can be used to generate and inject packets up to 132 bytes long
- Enough to play with stateful firewalls
- WEPWedgie automates packet injection

WEP Attack Tools

- aircrack
- airsnort
- Both tools can reliably recover static WEP keys
- aircrack often effective with as few as 75k packets!
- Once enough traffic is captured, analysis is typically under 1 minute

	aircrack 2.2														
			E00:00	0:03]	Tes	ted 2	keys	(got	t 104	0384	I¥s)				
(B	dep	th	but	e(vot	e)										
	07	1	DŽ(93)	59(15)	D2(13)	60(12)	EE (10)	5A(5)	
	07	1	57(227)	AE (40)	F7(27)	65(25)	62(22)	91(22)	
	07	1	B7(933)	9B (27)	01(25)	39(25)	F0(23)	06(20)	
	07		000	330)	62(39)	E8(38)	F6(38)	66(37)	0F(35)	
	07		A8 (475)	25(69)	0F (60)	56(50)	26(48)	92(44)	
	07		EB (519)	75(59)	E2(46)	C4(44)	66(43)	74(39)	
	07		60(171)	81(135)	7F (44)	82(44)	EA(37)	C4(35)	
	07		7E (358)	17(150)	16(36)	92(34)	BE (32)	E6(31)	
	07		DB (196)	8E (101)	BF (68)	8D (39)	DC (35)	50(33)	
	07		86(496)	A7(87)	A8 (48)	16(45)	A6 (41)	23(40)	
10	07		07(283)	14(120)	0E (45)	91(42)	10(41)	15(38)	
1	07		A4 (340)	19(77)	FE (72)	3E (46)	30(44)	4E (44)	
.2	07		A4(328)	40(187)	53(65)	48(55)	A5(45)	9A (42)	
		K	TY FOU	NDI F	N7 - !	57 · B7	- C9 - A	8 • F R		'F - NR		7-64	-A4 1		

So Now What?

- IEEE had already begun work on 802.11i with AES to address all known security problems
- After FMS opened floodgates on breaking WEP key, IEEE realized 802.11i and AES hardware was too far off to help
- Took critical parts, adapted to WEP hardware, and released as WPA

WiFi Protected Access

- Designed explicitly to address WEP vulnerabilities
- Any WEP compatible hardware should also support WPA
- Drivers need updating
- Supports pre-shared key or 802.1x
- Naive WEP RC4 usage algorithm replaced with TKIP

WPA Highlights

- Shared secret is never used directly
- IV reuse no longer possible
- Secure MIC checksum prevents replay/injection
- 4 Way Handshake allows two way authentication

TKIP Key Generation

Impossible to use any final keys for other purpose or recreate original secrets

No IV Reuse

- TKIP sequence number increased to 48 bits
- Used to generate 24 bit value for WEP hardware compatibility
- "Weak" IV values that leak key are avoided
- Sequences numbers must
 - Start at 0
 - Increase for each packet sent
 - Be dropped if IV is lower than last one sent

Secure MIC Checksum

- Message Integrity Check
- Calculates 64 bit value based on packet data and PTK generated secret
- Provides ~29 bits of randomness
- In theory, guessable in about 2 minutes at 802.11b data rates
- More than two MIC violations in 60 seconds shuts down radio for 60 seconds

Four Way Handshake

- Nonces plus PMK, MACs create keys
 - Both ends safely validate each other

Robust Security Network

- RSN, aka 802.11i, aka WPA2
- Served as the model for WPA
- Requires AES support in hardware
- Operationally nearly identical to WPA

- Uses RADIUS backend to securely authenticate connecting machines
- Numerous different authentication types
 MS-CHAP, TLS, PEAP, etc
- Can also be used to seed and rotate encryption engines instead of static shared secret
- Most dynamic WEP implementations are broken and don't rotate keys!
- The "Enterprise" part of WPA-Enterprise

802.1x Diagram

What About Denial of Service?

- Wireless is an inherently shared medium
- Several protocol level DoS attacks
 - Medium reservation
 - Deauth/disassociate flood
- Intentionally not addressed in WPA
- Best encryption in the world can't trump raw 2.5/5.8Ghz noise

Summary

- WEP just gives false sense of security
- Open WiFi secured upstream possible, but difficult
- WPA-PSK commonly available, gives very good security
- Questions? Comments? Suggestions?

Resources

Kismet

http://www.kismetwireless.net/

airodump, aircrack

http://www.wirelessdefence.org/Contents/Aircrack_airodump.htm

Back Track bootable wireless/security auditing

http://www.remote-exploit.org

Fluhrer, Mantin, Shamir WEP Weakness

http://www.drizzle.com/~aboba/IEEE/rc4_ksaproc.pdf

Linux wpa supplicant http://hostap.epitest.fi/wpa_supplicant

Real 802.11 Security Edney, Arbaugh ISBN 0-321-13620-9